2016年诺贝尔物理学奖,授予戴维·索利斯(David Thouless),与邓肯·霍尔丹(Duncan Haldane)和迈克尔·科斯特利茨(Michael Kosterlitz),以表彰他们在理论上发现了物质的拓扑相变和拓扑相。拓扑学是三位得奖者能做出这一成就的关键,它解释了为什么薄层物质的的电导率会以整数倍发生变化。
⬆️ 如果上面这段话给你一种“每个字都认识但合起来不像中文”的感觉,别怕。果壳给你一个说人话的版本,解释一下他们仨都做了什么——
一般的物质是按照一定规律排列的,比如冰是水分子按照网格排列起来形成的固态物。
物理上,我们说固态是一种“相”。
如果给冰加热,它会变成液态水,也就是另一种“相”。里面的水分子依然有规律,但就变成另一种规律了。
这样的变化被称为“相变”。
固体液体气体之间的相变我们见多了,但是在低温或高温状态下,某些物质呈现出了我们从未见过的“相”……
当物质变得很薄的时候,它们的特征会发生有趣的改变。人们曾经认为,对于很薄层的物质,分子的随机运动会让它陷入无序之中,所以不会遵循任何规律,或者说,没有任何有序的“相”。那么,自然也就谈不上相变了。
但是20世纪70年代,戴维·索利斯和迈克尔·科斯特利茨发现并非如此,只要温度足够低,它们也可以是有序的,也有“相”;非但如此,它们的相变还特别奇异,与日常里冰变成水那种相变很不一样。决定这一相变的因素是薄层物质上“旋”;当温度上升的时候,本来成对出现的旋突然都分开了。这样的相变被称为“拓扑相变”——因为它用到了拓扑学来描述。
2
拓扑学是一个数学分支,它研究的是那些“不连续”的特征。假设我有一个长方形,它可以变大一点点,变小一点点,粗一点点,细一点点,这样的变化是连续的;拓扑学对此不关心。但如果我在长方形里挖了洞,那么它要么没有洞,要么有1个、2个、3个⋯⋯,不能有1.5个或者3.14个。拓扑学关心的就是类似于这个洞的特征。
万万没想到,诺贝尔颁奖典礼上会出现一袋子面包——组委会用没有洞的肉桂卷(cinnamon bun)、一个洞的面包圈(bagel)和两个洞的碱水面包(pretzel)解释起了拓扑是什么回事,在拓扑上,这几种结构是完全不一样的:洞的数量不同。
如果老禅师说“每张纸都有两面”,你可以拿莫比乌斯环去坑他:莫比乌斯环只有一个面。但如果老禅师说“每张纸都有整数倍个面”就糟糕了,因为你做不出有1.5面的结构来。这些“没有半个”的,就是拓扑学负责的领域。
(拓扑学还有一个特点是,看局部不管用。一个长方形有几个洞,完全无法依靠看它的局部来判断,必须看整体。)
在索利斯和科斯特利茨研究的物质里,发生的就是这样的场景。薄层的物质上有很多“旋”,低温的时候是两个两个成对出现,温度一升高,一下子全都分开成一个个的了。这个过程就需要用拓扑的不连续特征来描述。
左边是一对一对的“旋”,在高温状态下,变成了单涡旋。这个过程就是拓扑相变。
但拓扑学在物理学中的作用还不止于此。
3
物理世界有一种神秘的现象叫做“量子霍尔效应”:当把一个薄层导体放进两块半导体之间,冷却到极低温度,再加上一个磁场的时候,它的电导率突然不能连续改变了,只能一步步地改变,先是变成两倍,然后三倍、四倍、五倍这样下去。——这很不合常理,因为日常物质的变化都是连续的。
在日常生活中,物质的变化曲线应该是连续的,像滑梯一样。但某些状态下,电导率的变化却成了台阶,只能一步一级的往上迈了。为什么呢?
1983年,索利斯意识到,这个现象也需要用拓扑学解释。
量子霍尔效应里,相对自由运动的电子会形成一种被称为“拓扑量子流体”的东西;它表现出来的特征,就能够被拓扑学所描述。电导率需要用到所有这些电子的整体性质,这正是拓扑学的领域;而就像一个长方形里的洞只能是整数个,它的电导率也只能以整数倍变化。
1988年,另一位研究者邓肯·霍尔丹的理论计算表明,“拓扑量子流体”不光在量子霍尔效应里存在,其他条件下也能,比如没有磁场时的薄层超导体。这个计算结果在2014年得到了验证。
霍尔丹还在1982年做出了一个令人吃惊的预测。量子物理中有两种原子磁铁,一奇一偶。霍尔丹计算出,如果一串偶磁铁排成排,得到的原子串具有拓扑性;但奇磁铁就没有。和拓扑量子流体一样,它也需要看整体才能知道,也是只在物体的边缘才表现出来,也具有很多奇特的属性。如今,量子霍尔流体和磁原子链都已被归于一大群全新的拓扑状态之中。
4
拓扑绝缘体、拓扑超导体和拓扑金属都是目前的热门话题。过去十年来,凝聚态物理的最前沿都被这个领域的研究所主导,重要原因是这些拓扑材料对于新一代电子元件和超导体会十分重要,未来还可能导向量子计算机的研究。此刻,研究者依然在探索三位诺奖得主开创的薄层物质“平面国”的奇特属性。
什么是拓扑绝缘体
根据电子态的拓扑性质的不同,“绝缘体”和“金属”还可以进行更细致的划分。拓扑绝缘体就是根据这样的新标准而划分的区别于其他普通绝缘体的一类绝缘体。因而,拓扑绝缘体的体内与人们通常认识的绝缘体一样,是绝缘的,但是在它的边界或表面总是存在导电的边缘态,这是它有别于普通绝缘体的最独特的性质。这样的导电边缘态是稳定存在的,且不同自旋的导电电子的运动方向是相反的,所以信息的传递可以通过电子的自旋,而不像传统材料通过电荷,不涉及耗散过程,通俗地说就是不会发热,这一发现让人们对制造未来新型电脑芯片等元器件充满了希望。
关键词: 什么是拓扑 拓扑绝缘体 拓扑相变 拓扑金属 新型电脑芯片 量子计算机 拓扑超导体 每张纸都有两面 量子霍尔效应 拓扑学是什么 碱水面包